Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 7.3 Inverse Trig Functions (PF3)
Objectives
Determine the inverse sine, cosine, and tangent values; graph inverse trig functions and determine the limitations on the domain and range.
Subsection 7.3.1 Activities
Activity 7.3.1 .
Which of the following angles satisfy
\(\cos(\theta)=\frac{1}{2}\text{?}\)
\(\displaystyle \dfrac{\pi}{6}\)
\(\displaystyle \dfrac{\pi}{3}\)
\(\displaystyle \dfrac{2\pi}{3}\)
\(\displaystyle \dfrac{5\pi}{6}\)
\(\displaystyle \dfrac{7\pi}{6}\)
\(\displaystyle \dfrac{4\pi}{3}\)
\(\displaystyle \dfrac{5\pi}{3}\)
\(\displaystyle \dfrac{11\pi}{6}\)
Activity 7.3.2 .
A carpenter is cutting a hand rail for a ramp on his mitre saw. The ramp goes up 4 feet, and the length of the hand rail is 48 feet long. Which of the following equations determines the angle of the ramp, which the carpenter will use to set his saw?
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(\displaystyle \sin(\theta)=\frac{1}{12}\)
\(\displaystyle \cos(\theta)=\frac{1}{12}\)
\(\displaystyle \tan(\theta)=\frac{1}{12}\)
\(\displaystyle \cot(\theta)=\frac{1}{12}\)
Activity 7.3.5 .
By restricting the domain, we can find a part of the sine function which is
one-to-one , and thus allows us to define an inverse function.
Which of the following domain restrictions is one-to-one?
\(\displaystyle 0 \leq x \leq \pi\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(\displaystyle -\dfrac{\pi}{2} \leq x \leq \dfrac{\pi}{2}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(\displaystyle 0 \leq x \leq 2\pi\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(\displaystyle -\pi \leq x \leq \pi\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Hint .
Use the horizontal line test.
Answer .
Definition 7.3.6 .
The
arcsine function, denoted
\(\arcsin(x)\text{,}\) is the inverse of the restriction of
\(\sin(x)\) to the domain
\([-\dfrac{\pi}{2},\dfrac{\pi}{2}]\text{.}\)
In other words,
\(\arcsin(x)\) is the unique angle
\(\theta\) with
\(-\dfrac{\pi}{2} \leq \theta \leq \dfrac{\pi}{2}\) such that
\(\sin(\theta)=x\text{.}\)
Aside Since the inverse of a function
\(f(x)\) is usually denoted
\(f^{-1}(x)\text{,}\) some authors and calculators like to use the (more compact) notation
\(\sin^{-1}(x)\) instead of
\(\arcsin(x)\text{.}\) This should not be confused with
\(\left(\sin(x)\right)^{-1}\text{,}\) i.e.
\(\csc(x)\text{.}\)
Activity 7.3.7 .
Compute each of the following, without the use of technology.
(a)
\(\arcsin\left(\dfrac{1}{2}\right)\)
(b)
\(\arcsin\left(-1\right)\)
(c)
\(\arcsin\left(\dfrac{\sqrt{2}}{2}\right)\)
(d)
\(\arcsin\left(-\dfrac{\sqrt{3}}{2}\right)\)
Activity 7.3.8 .
Which of the following domain restrictions of
\(\cos(x)\) is one-to-one?
\(\displaystyle 0 \leq x \leq \pi\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(\displaystyle -\dfrac{\pi}{2} \leq x \leq \dfrac{\pi}{2}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(\displaystyle 0 \leq x \leq 2\pi\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(\displaystyle -\pi \leq x \leq \pi\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Hint .
Use the horizontal line test.
Answer .
Definition 7.3.9 .
The
arccosine function, denoted
\(\arccos(x)\text{,}\) is the inverse of the restriction of
\(\cos(x)\) to the domain
\([0,\pi]\text{.}\)
In other words,
\(\arccos(x)\) is the unique angle
\(\theta\) with
\(0 \leq \theta \leq \pi\) such that
\(\cos(\theta)=x\text{.}\)
Activity 7.3.10 .
Compute each of the following, without the use of technology.
(a)
\(\arccos\left(\dfrac{1}{2}\right)\)
(b)
\(\arccos\left(-1\right)\)
(c)
\(\arccos\left(\dfrac{\sqrt{2}}{2}\right)\)
(d)
\(\arccos\left(-\dfrac{\sqrt{3}}{2}\right)\)
Activity 7.3.11 .
Which of the following domain restrictions of
\(\tan(x)\) is one-to-one?
\(\displaystyle 0 \leq x \leq \pi\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(\displaystyle -\dfrac{\pi}{2} \leq x \leq \dfrac{\pi}{2}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(\displaystyle 0 \leq x \leq 2\pi\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(\displaystyle -\pi \leq x \leq \pi\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Hint .
Use the horizontal line test.
Answer .
Definition 7.3.12 .
The
arctangent function, denoted
\(\arctan(x)\text{,}\) is the inverse of the restriction of
\(\tan(x)\) to the domain
\(\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)\text{.}\)
In other words,
\(\arctan(x)\) is the unique angle
\(\theta\) with
\(-\dfrac{\pi}{2} \lt \theta \lt \dfrac{\pi}{2}\) such that
\(\tan(\theta)=x\text{.}\)
Activity 7.3.14 .
Compute each of the following, without the use of technology.
(a)
\(\arctan\left(1\right)\)
(b)
\(\arctan\left(-\sqrt{3}\right)\)
(c)
\(\arctan\left(0\right)\)
(d)
\(\arctan\left(\dfrac{\sqrt{3}}{3}\right)\)
Activity 7.3.15 .
Sometimes, as in
ActivityΒ 7.3.2 , we need to find an inverse trigonometric function that does not produce one of our special angles.
Compute each of the following using technology (e.g. a calculator).
Aside Note that most calculators use the shorter notation, e.g.
\(\sin^{-1}\text{,}\) for this operation.
(a)
\(\arcsin\left(\frac{1}{12}\right)\)
Answer .
\(4.78^\circ\) or
\(0.083\) radians
(b)
\(\arccos\left(-\dfrac{3}{5}\right)\)
Answer .
\(126.9^\circ\) or
\(2.21\) radians
(c)
\(\arctan\left(2\right)\)
Answer .
\(63.43^\circ\) or
\(1.11\) radians
Activity 7.3.17 .
Consider the function
\(f(x)=\arcsin(x)\text{.}\)
(a)
Complete the table of values.
\(-1\)
\(-\dfrac{\sqrt{3}}{2}\)
\(-\dfrac{\sqrt{2}}{2}\)
\(-\dfrac{1}{2}\)
\(0\)
\(\dfrac{1}{2}\)
\(\dfrac{\sqrt{2}}{2}\)
\(\dfrac{\sqrt{3}}{2}\)
\(1\)
Hint .
Recall that
\(\theta=\arcsin(x)\) means
\(\sin(\theta)=x\text{.}\)
Answer .
\(-1\)
\(-\dfrac{\pi}{2}\)
\(-\dfrac{\sqrt{3}}{2}\)
\(-\dfrac{\pi}{3}\)
\(-\dfrac{\sqrt{2}}{2}\)
\(-\dfrac{\pi}{4}\)
\(-\dfrac{1}{2}\)
\(-\dfrac{\pi}{6}\)
\(0\)
\(0\)
\(\dfrac{1}{2}\)
\(\dfrac{\pi}{6}\)
\(\dfrac{\sqrt{2}}{2}\)
\(\dfrac{\pi}{4}\)
\(\dfrac{\sqrt{3}}{2}\)
\(\dfrac{\pi}{3}\)
\(1\)
\(\dfrac{\pi}{2}\)
(b)
Plot these values on a coordinate plane to approximate the graph of
\(f(x)=\arcsin(x)\text{.}\) Then sketch the graph of the arcsine curve using the points as a guide.
Answer .
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(c)
What is the domain of
\(f(x)=\arcsin(x)\text{?}\)
(d)
What is the range of
\(f(x)=\arcsin(x)\text{?}\)
Answer .
\([-\dfrac{\pi}{2},\dfrac{\pi}{2}]\)
Activity 7.3.18 .
Consider the function
\(f(x)=\arccos(x)\text{.}\)
(a)
Complete the table of values.
\(-1\)
\(-\dfrac{\sqrt{3}}{2}\)
\(-\dfrac{\sqrt{2}}{2}\)
\(-\dfrac{1}{2}\)
\(0\)
\(\dfrac{1}{2}\)
\(\dfrac{\sqrt{2}}{2}\)
\(\dfrac{\sqrt{3}}{2}\)
\(1\)
Hint .
Recall that
\(\theta=\arccos(x)\) means
\(\cos(\theta)=x\text{.}\)
Answer .
\(-1\)
\(\pi\)
\(-\dfrac{\sqrt{3}}{2}\)
\(\dfrac{5\pi}{6}\)
\(-\dfrac{\sqrt{2}}{2}\)
\(\dfrac{3\pi}{4}\)
\(-\dfrac{1}{2}\)
\(\dfrac{2\pi}{3}\)
\(0\)
\(\dfrac{\pi}{2}\)
\(\dfrac{1}{2}\)
\(\dfrac{\pi}{3}\)
\(\dfrac{\sqrt{2}}{2}\)
\(\dfrac{\pi}{4}\)
\(\dfrac{\sqrt{3}}{2}\)
\(\dfrac{\pi}{6}\)
\(1\)
\(0\)
(b)
Plot these values on a coordinate plane to approximate the graph of
\(f(x)=\arccos(x)\text{.}\) Then sketch the graph of the arccosine curve using the points as a guide.
Answer .
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(c)
What is the domain of
\(f(x)=\arccos(x)\text{?}\)
(d)
What is the range of
\(f(x)=\arccos(x)\text{?}\)
Activity 7.3.19 .
Consider the function
\(f(x)=\arctan(x)\text{.}\)
(a)
Complete the table of values.
\(-\sqrt{3}\)
\(-1\)
\(-\dfrac{\sqrt{3}}{3}\)
\(0\)
\(\dfrac{\sqrt{3}}{3}\)
\(1\)
\(\sqrt{3}\)
Hint .
Recall that
\(\theta=\arctan(x)\) means
\(\tan(\theta)=x\text{.}\)
Answer .
\(-\sqrt{3}\)
\(-\dfrac{\pi}{3}\)
\(-1\)
\(-\dfrac{\pi}{4}\)
\(-\dfrac{\sqrt{3}}{3}\)
\(-\dfrac{\pi}{6}\)
\(0\)
\(0\)
\(\dfrac{\sqrt{3}}{3}\)
\(\dfrac{\pi}{6}\)
\(1\)
\(\dfrac{\pi}{4}\)
\(\sqrt{3}\)
\(\dfrac{\pi}{3}\)
(b)
Plot these values on a coordinate plane to approximate the graph of
\(f(x)=\arctan(x)\text{.}\) Then sketch the graph of the arctangent curve using the points as a guide.
Answer .
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(c)
What is the domain of
\(f(x)=\arctan(x)\text{?}\)
(d)
What is the range of
\(f(x)=\arctan(x)\text{?}\)
Answer .
\(\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)\)
Activity 7.3.20 .
Sometimes when solving applied problems, we need to exactly (not approximately) evaluate expressions like
\(\sin\left(\arccos\left(\frac{5}{13}\right)\right)\text{.}\)
(a)
Which of the following sentences describe the expression
\(\sin\left(\arccos\left(\frac{5}{13}\right)\right)\text{?}\)
The angle whose cosine is the same as the sine of
\(\frac{5}{13}\text{.}\)
The angle whose sine is the same as the cosine of
\(\frac{5}{13}\text{.}\)
The cosine of the angle whose sine is
\(\frac{5}{13}\text{.}\)
The sine of the angle whose cosine is
\(\frac{5}{13}\text{.}\)
(b)
Let
\(\theta = \arccos(\frac{5}{13})\text{.}\) Draw a right triangle with an angle of
\(\theta\text{,}\) and find the lengths of its three sides.
Answer .
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(c)
Find
\(\sin(\theta)\text{.}\) Since we defined
\(\theta = \arccos(\frac{5}{13})\text{,}\) this gives us
\(\sin(\arccos(\frac{5}{13}))\text{.}\)
\(\displaystyle \dfrac{5}{13}\)
\(\displaystyle \dfrac{12}{13}\)
\(\displaystyle \dfrac{5}{12}\)
\(\displaystyle \dfrac{13}{12}\)
Activity 7.3.21 .
Compute each of the following.
(a)
\(\tan(\arcsin(\frac{8}{17}))\)
(b)
\(\sec(\arctan(\frac{24}{7}))\)
(c)
\(\tan(\arcsin(\frac{3}{4}))\)
(d)
Hint .
Draw an appropriate right triangle with two sides as
\(x\) and
\(1\text{.}\)
Answer .
Subsection 7.3.2 Exercises