Skip to main content
Logo image

Section 7.3 Inverse Trig Functions (PF3)

Subsection 7.3.1 Activities

Activity 7.3.1.

Which of the following angles satisfy \(\cos(\theta)=\frac{1}{2}\text{?}\)
  1. \(\displaystyle \dfrac{\pi}{6}\)
  2. \(\displaystyle \dfrac{\pi}{3}\)
  3. \(\displaystyle \dfrac{2\pi}{3}\)
  4. \(\displaystyle \dfrac{5\pi}{6}\)
  5. \(\displaystyle \dfrac{7\pi}{6}\)
  6. \(\displaystyle \dfrac{4\pi}{3}\)
  7. \(\displaystyle \dfrac{5\pi}{3}\)
  8. \(\displaystyle \dfrac{11\pi}{6}\)
Answer.

Activity 7.3.2.

A carpenter is cutting a hand rail for a ramp on his mitre saw. The ramp goes up 4 feet, and the length of the hand rail is 48 feet long. Which of the following equations determines the angle of the ramp, which the carpenter will use to set his saw?
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
  1. \(\displaystyle \sin(\theta)=\frac{1}{12}\)
  2. \(\displaystyle \cos(\theta)=\frac{1}{12}\)
  3. \(\displaystyle \tan(\theta)=\frac{1}{12}\)
  4. \(\displaystyle \cot(\theta)=\frac{1}{12}\)
Answer.

Observation 7.3.3.

Often in applications, in addition to finding the sine or cosine of an angle, we need to find an angle with a given sine or cosine or tangent. In other words, we need to have inverse functions of our six trigonometric functions.

Remark 7.3.4.

In ActivityΒ 7.3.1, we saw that there are many angles with a given sine or cosine. We must systematically choose one of these to define an inverse function.

Activity 7.3.5.

By restricting the domain, we can find a part of the sine function which is one-to-one, and thus allows us to define an inverse function.
Which of the following domain restrictions is one-to-one?
  1. \(\displaystyle 0 \leq x \leq \pi\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  2. \(\displaystyle -\dfrac{\pi}{2} \leq x \leq \dfrac{\pi}{2}\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  3. \(\displaystyle 0 \leq x \leq 2\pi\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  4. \(\displaystyle -\pi \leq x \leq \pi\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
Hint.
Use the horizontal line test.
Answer.

Definition 7.3.6.

The arcsine function, denoted \(\arcsin(x)\text{,}\) is the inverse of the restriction of \(\sin(x)\) to the domain \([-\dfrac{\pi}{2},\dfrac{\pi}{2}]\text{.}\)
In other words, \(\arcsin(x)\) is the unique angle \(\theta\) with \(-\dfrac{\pi}{2} \leq \theta \leq \dfrac{\pi}{2}\) such that \(\sin(\theta)=x\text{.}\)

Aside

Activity 7.3.7.

Compute each of the following, without the use of technology.

Activity 7.3.8.

Which of the following domain restrictions of \(\cos(x)\) is one-to-one?
  1. \(\displaystyle 0 \leq x \leq \pi\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  2. \(\displaystyle -\dfrac{\pi}{2} \leq x \leq \dfrac{\pi}{2}\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  3. \(\displaystyle 0 \leq x \leq 2\pi\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  4. \(\displaystyle -\pi \leq x \leq \pi\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
Hint.
Use the horizontal line test.
Answer.

Definition 7.3.9.

The arccosine function, denoted \(\arccos(x)\text{,}\) is the inverse of the restriction of \(\cos(x)\) to the domain \([0,\pi]\text{.}\)
In other words, \(\arccos(x)\) is the unique angle \(\theta\) with \(0 \leq \theta \leq \pi\) such that \(\cos(\theta)=x\text{.}\)

Activity 7.3.11.

Which of the following domain restrictions of \(\tan(x)\) is one-to-one?
  1. \(\displaystyle 0 \leq x \leq \pi\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  2. \(\displaystyle -\dfrac{\pi}{2} \leq x \leq \dfrac{\pi}{2}\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  3. \(\displaystyle 0 \leq x \leq 2\pi\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
  4. \(\displaystyle -\pi \leq x \leq \pi\)
    Diagram Exploration Keyboard Controls
    Key Action
    Enter, A Activate keyboard driven exploration
    B Activate menu driven exploration
    Escape Leave exploration mode
    Cursor down Explore next lower level
    Cursor up Explore next upper level
    Cursor right Explore next element on level
    Cursor left Explore previous element on level
    X Toggle expert mode
    W Extra details if available
    Space Repeat speech
    M Activate step magnification
    Comma Activate direct magnification
    N Deactivate magnification
    Z Toggle subtitles
    C Cycle contrast settings
    T Monochrome colours
    L Toggle language (if available)
    K Kill current sound
    Y Stop sound output
    O Start and stop sonification
    P Repeat sonification output
Hint.
Use the horizontal line test.
Answer.
A. and B.

Definition 7.3.12.

The arctangent function, denoted \(\arctan(x)\text{,}\) is the inverse of the restriction of \(\tan(x)\) to the domain \(\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)\text{.}\)
In other words, \(\arctan(x)\) is the unique angle \(\theta\) with \(-\dfrac{\pi}{2} \lt \theta \lt \dfrac{\pi}{2}\) such that \(\tan(\theta)=x\text{.}\)

Observation 7.3.13.

Note that while \(\arcsin(x)\) and \(\arccos(x)\) were defined by restricting the domain to a closed interval, since \(\tan(x)\) is not defined at \(-\dfrac{\pi}{2}\) or \(\dfrac{\pi}{2}\text{,}\) we define \(\arctan(x)\) by restricting the domain to the open interval \(\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)\text{.}\)

Activity 7.3.15.

Sometimes, as in ActivityΒ 7.3.2, we need to find an inverse trigonometric function that does not produce one of our special angles.
Compute each of the following using technology (e.g. a calculator).
Aside

Observation 7.3.16.

Next, we look at the graphs of \(\arcsin(x)\text{,}\) \(\arccos(x)\text{,}\) and \(\arctan(x)\text{.}\)

Activity 7.3.17.

Consider the function \(f(x)=\arcsin(x)\text{.}\)
(a)
Complete the table of values.
\(x\) \(\arcsin(x)\)
\(-1\)
\(-\dfrac{\sqrt{3}}{2}\)
\(-\dfrac{\sqrt{2}}{2}\)
\(-\dfrac{1}{2}\)
\(0\)
\(\dfrac{1}{2}\)
\(\dfrac{\sqrt{2}}{2}\)
\(\dfrac{\sqrt{3}}{2}\)
\(1\)
Hint.
Recall that \(\theta=\arcsin(x)\) means \(\sin(\theta)=x\text{.}\)
Answer.
\(x\) \(\arcsin(x)\)
\(-1\) \(-\dfrac{\pi}{2}\)
\(-\dfrac{\sqrt{3}}{2}\) \(-\dfrac{\pi}{3}\)
\(-\dfrac{\sqrt{2}}{2}\) \(-\dfrac{\pi}{4}\)
\(-\dfrac{1}{2}\) \(-\dfrac{\pi}{6}\)
\(0\) \(0\)
\(\dfrac{1}{2}\) \(\dfrac{\pi}{6}\)
\(\dfrac{\sqrt{2}}{2}\) \(\dfrac{\pi}{4}\)
\(\dfrac{\sqrt{3}}{2}\) \(\dfrac{\pi}{3}\)
\(1\) \(\dfrac{\pi}{2}\)
(b)
Plot these values on a coordinate plane to approximate the graph of \(f(x)=\arcsin(x)\text{.}\) Then sketch the graph of the arcsine curve using the points as a guide.
Answer.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 7.3.18.

Consider the function \(f(x)=\arccos(x)\text{.}\)
(a)
Complete the table of values.
\(x\) \(\arccos(x)\)
\(-1\)
\(-\dfrac{\sqrt{3}}{2}\)
\(-\dfrac{\sqrt{2}}{2}\)
\(-\dfrac{1}{2}\)
\(0\)
\(\dfrac{1}{2}\)
\(\dfrac{\sqrt{2}}{2}\)
\(\dfrac{\sqrt{3}}{2}\)
\(1\)
Hint.
Recall that \(\theta=\arccos(x)\) means \(\cos(\theta)=x\text{.}\)
Answer.
\(x\) \(\arccos(x)\)
\(-1\) \(\pi\)
\(-\dfrac{\sqrt{3}}{2}\) \(\dfrac{5\pi}{6}\)
\(-\dfrac{\sqrt{2}}{2}\) \(\dfrac{3\pi}{4}\)
\(-\dfrac{1}{2}\) \(\dfrac{2\pi}{3}\)
\(0\) \(\dfrac{\pi}{2}\)
\(\dfrac{1}{2}\) \(\dfrac{\pi}{3}\)
\(\dfrac{\sqrt{2}}{2}\) \(\dfrac{\pi}{4}\)
\(\dfrac{\sqrt{3}}{2}\) \(\dfrac{\pi}{6}\)
\(1\) \(0\)
(b)
Plot these values on a coordinate plane to approximate the graph of \(f(x)=\arccos(x)\text{.}\) Then sketch the graph of the arccosine curve using the points as a guide.
Answer.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 7.3.19.

Consider the function \(f(x)=\arctan(x)\text{.}\)
(a)
Complete the table of values.
\(x\) \(\arctan(x)\)
\(-\sqrt{3}\)
\(-1\)
\(-\dfrac{\sqrt{3}}{3}\)
\(0\)
\(\dfrac{\sqrt{3}}{3}\)
\(1\)
\(\sqrt{3}\)
Hint.
Recall that \(\theta=\arctan(x)\) means \(\tan(\theta)=x\text{.}\)
Answer.
\(x\) \(\arctan(x)\)
\(-\sqrt{3}\) \(-\dfrac{\pi}{3}\)
\(-1\) \(-\dfrac{\pi}{4}\)
\(-\dfrac{\sqrt{3}}{3}\) \(-\dfrac{\pi}{6}\)
\(0\) \(0\)
\(\dfrac{\sqrt{3}}{3}\) \(\dfrac{\pi}{6}\)
\(1\) \(\dfrac{\pi}{4}\)
\(\sqrt{3}\) \(\dfrac{\pi}{3}\)
(b)
Plot these values on a coordinate plane to approximate the graph of \(f(x)=\arctan(x)\text{.}\) Then sketch the graph of the arctangent curve using the points as a guide.
Answer.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 7.3.20.

Sometimes when solving applied problems, we need to exactly (not approximately) evaluate expressions like \(\sin\left(\arccos\left(\frac{5}{13}\right)\right)\text{.}\)
(a)
Which of the following sentences describe the expression \(\sin\left(\arccos\left(\frac{5}{13}\right)\right)\text{?}\)
  1. The angle whose cosine is the same as the sine of \(\frac{5}{13}\text{.}\)
  2. The angle whose sine is the same as the cosine of \(\frac{5}{13}\text{.}\)
  3. The cosine of the angle whose sine is \(\frac{5}{13}\text{.}\)
  4. The sine of the angle whose cosine is \(\frac{5}{13}\text{.}\)
Answer.
(b)
Let \(\theta = \arccos(\frac{5}{13})\text{.}\) Draw a right triangle with an angle of \(\theta\text{,}\) and find the lengths of its three sides.
Answer.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 7.3.21.

Compute each of the following.

Subsection 7.3.2 Exercises